Electronic Interactions and Double-Layer Charging for Supported Catalyst Nanoparticles Disentangled by Density-Potential Functional Theory

JÜLICH Forschungszentrum

Scan me

Y. Zhang^{1,2}, T. Binninger¹, J. Huang^{1,2}, M. Eikerling^{1,2}

¹ Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research,

Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

² Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany Corresponding author: yuf.zhang@fz-juelich.de, <a href="mailto:mailto

1. Background

- Supported nanoparticles (NPs) are widely used in technical devices reliant on catalysis.
- Support materials interact actively with metal NPs and greatly impact catalytical activity.
- Electron redistribution occurs between NP and support to achieve electronic equilibration. Its impact on NP's active surface in contact with electrolyte needs to be explored^[2].
- Charging features of the electric double layer (EDL) of supported NP system is different from planar electrode and is awaiting investigation.

2. Methodology

Density-potential functional theory^[3]

Electron density: n_e Electric potential: ϕ

Free energy functional of the metal-solution interphase $f = f_{\rm qm}[n_e, \nabla n_e]$ quantum mechanical part $+f_{\rm c}[\phi, \nabla \phi, \{n_i\}]$ classical part $+f_{\rm inter}[n_e, \phi, \{n_i\}]$ quantum-classical interactions $-\sum_i n_i \mu_i$ grand-canonical

- Continuum, not atomistic model
- Metal ionic charges: uniform background
- Metal electrons: Thomas-Fermi
- Electron spillover at interface captured
- Solution: modified Poisson-Boltzmann

Workflow

Structural relaxation

3. Results

 Electrification upon contact between NP and support due to electron redistribution

Pt@C
Pt@C
water

Pt Ag

Ag

Less e
Electron density difference plot

Pt@Ag

Pt Ag

For Pt@C and Pt@Ag, different electron redistributions lead to distinct electric field directions.

Local potential of zero charge (LPZC) for supported NP system

LPZC affects local reaction environment which is significant for catalytic activity.

4. Take-home messages

- Electron redistribution in supported NP system induces an electric field, which gives a variation of local potential of zero charge.
- Local potential of zero charge, significant to local reaction conditions, can be regulated by using a suitable support material.

References

- [1] T. Binninger et al., J. Electrochem. Soc., 163, 10 (2016)
- [2] T. Binninger et al., Phys. Rev. B, 96, 165405 (2017)
- [3] J. Huang et al., J. Chem. Theory Comput. 17 (4), 2417-2430 (2021)

Acknowledgement

4th Period of Program-oriented Funding of the Helmholtz Association Program 2: Materials and Technologies for the Energy Transition