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1. Background 

2. Methodology

3. Results
 Supported nanoparticles (NPs) are widely used

in technical devices reliant on catalysis.

 Support materials interact actively with metal

NPs and greatly impact catalytical activity.

 Electron redistribution occurs between NP and

support to achieve electronic equilibration. Its

impact on NP’s active surface in contact with

electrolyte needs to be explored[2].

 Charging features of the electric double layer

(EDL) of supported NP system is different from

planar electrode and is awaiting investigation.
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4. Take-home messages

 Electron redistribution in supported NP system induces an electric

field, which gives a variation of local potential of zero charge.

 Local potential of zero charge, significant to local reaction

conditions, can be regulated by using a suitable support material.
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 Density-potential functional theory[3]

 Electrification upon contact between NP and support due to

electron redistribution

• Continuum, not atomistic model

• Metal ionic charges: uniform background

• Metal electrons: Thomas-Fermi

• Electron spillover at interface captured

• Solution: modified Poisson-Boltzmann

Electron density: 𝒏𝒆 Electric potential: 𝝓
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 Local potential of zero charge (LPZC) for supported NP system
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LPZC affects local reaction environment which is significant 

for catalytic activity.
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Free energy functional of the metal-solution interphase
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Bond energy is dictated by the interplay of quantum-

mechanical Pauli repulsion and electrostatic attraction

For Pt@C and Pt@Ag, different electron redistributions lead to 

distinct electric field directions.
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